Lesson 14. Economic Applications of Linear Systems

- 1 The Leontief Input-Output Model
 - Economy with a number of industries
 - Each industry produces a single homogeneous product
 - Input demand for each product:
 - Outputs for one industry are used as input for another industry
 - Final demand for each product:
 - e.g. consumer households, government sector, foreign countries
 - What output should each industry produce to satisfy the total demand for all products?

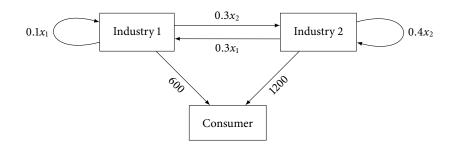
2 An example

- Economy with 2 industries/products
- Let

 x_1 = output of industry 1, in dollars

 x_2 = output of industry 2, in dollars

• Required inputs and demand, in dollars:



• Output of each industry must be just sufficient to meet the required inputs and demand:

• We can rewrite this system of equations in matrix form:

• Using the inverse of the coefficient matrix, we can find the required output levels x_1 and x_2 :

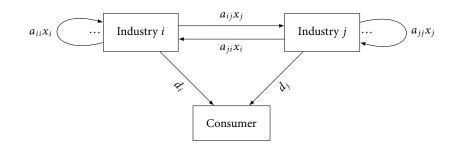
- Note that \$1 of product 1 requires \$0.1 of product 1 and \$0.3 of product 2
- \Rightarrow \$1 of product 1 requires \$(1 0.1 0.3) = \$0.6 of primary inputs
 - Inputs besides those supplied by the industries in the economy, e.g. labor
- In addition, note that \$1 of product 2 requires \$0.3 of product 1 and \$0.4 of product 2
- Therefore, \$1 of product 2 requires

of primary inputs

• What is the total required amount of primary inputs for this economy?

3 Generalization to economies with *n* industries

- Let x_i = output of industry *i*, in dollars (i = 1, ..., n)
- Required inputs and demand, in dollars:



- a_{ij} = dollars of product *i* required to produce one dollar of product *j* (*i* = 1, ..., *n*; *j* = 1, ..., *n*)
- d_i = final demand of product *i* in dollars (i = 1, ..., n)

• Output of each industry must be just sufficient to meet the required inputs and demand:

• We can rewrite this system of equations in matrix form:

- Let A be the matrix of a_{ij} values the **input matrix**
- Let *D* be the column vector of d_i values
- We can represent this system as
- *I A* is the **Leontief matrix**
- If I A is nonsingular, then we can solve for the required outputs:
- \$1 of product *j* requires a_{1j} of product 1, a_{2j} of product 2, ..., a_{nj} of product *n*
- Let a_{0j} represent the primary inputs required for \$1 of product *j*:
- The total required amount of primary inputs for this economy is:

Example 1. Consider an economy with 3 industries/products. Suppose the input matrix is

	0.2	0.3	0.2]
<i>A</i> =	0.4	0.1	0.2 0.2 0.2
	0.1	0.3	0.2

and the final demands for the 3 products are $d_1 = 10$, $d_2 = 5$, and $d_3 = 6$.

a. What are the primary inputs of each product?

b. What is the required output of the 3 industries?

c. Find the total required amount of primary inputs for this economy.